1. Lines in \mathbb{R}^2
2. Section 12.5: lines and planes in space
3. Application: perspective projection
Convection

- As from now on we will identify points with terminal points of vectors in standard position:

\[P = \mathbf{v} \]

- We will abandon the notation \(\langle x_1, \ldots, x_n \rangle \) and use \((x_1, \ldots, x_n)\) instead.
Definition

A line in \mathbb{R}^2 is defined by an equation of the form

\[\ell: ax + by = c \]

(*)

with a, b and c real numbers.
Definition

A line in \(\mathbb{R}^2 \) is defined by an equation of the form

\[
\ell: ax + by = c
\]

(*)

with \(a, b \) and \(c \) real numbers.

The line \(\ell \) consists of the points that satisfy equation (*):

\[
\ell = \{(x, y) \mid ax + by = c\}.
\]
Definition

A line in \mathbb{R}^2 is defined by an equation of the form

$$\ell: ax + by = c$$

(*)

with a, b and c real numbers.

- The line ℓ consists of the points that satisfy equation (*):
 $$\ell = \{(x, y) | ax + by = c\}.$$
- The line ℓ is the **solution set** of equation (*).
Definition

A **parametrisation** of the line \(\ell \) is a function \(r: \mathbb{R} \to \mathbb{R}^2 \) such that \(r(t) \) reaches all points of \(\ell \) while \(t \) runs through all real numbers.

![Diagram of a line and a point](image.png)

\(\ell \)

\(r(t) \)

\(y \)

\(x \)
A parametrisation of the line \(\ell \) is a function \(r : \mathbb{R} \to \mathbb{R}^2 \) such that \(r(t) \) reaches all points of \(\ell \) while \(t \) runs through all real numbers.

- The number \(t \) is called the parameter.
Definition

A *parametrisation* of the line ℓ is a function $\mathbf{r}: \mathbb{R} \to \mathbb{R}^2$ such that $\mathbf{r}(t)$ reaches all points of ℓ while t runs through all real numbers.

- The number t is called the **parameter**.
- The line ℓ is the set of all points $\mathbf{r}(t)$:
 $$\ell = \{ \mathbf{r}(t) \mid t \in \mathbb{R} \}.$$
Definition

A parametrisation of the line ℓ is a function $r: \mathbb{R} \rightarrow \mathbb{R}^2$ such that $r(t)$ reaches all points of ℓ while t runs through all real numbers.

- The number t is called the parameter.
- The line ℓ is the set of all points $r(t)$:
 \[\ell = \{ r(t) \mid t \in \mathbb{R} \} . \]
- The function $r(t)$ has two components that both depend on t:
 \[r(t) = (x(t), y(t)) . \]
A parametrisation of the line \(\ell \) is a function \(r: \mathbb{R} \rightarrow \mathbb{R}^2 \) such that \(r(t) \) reaches all points of \(\ell \) while \(t \) runs through all real numbers.

- The number \(t \) is called the **parameter**.
- The line \(\ell \) is the set of all points \(r(t) \):
 \[
 \ell = \{ r(t) \mid t \in \mathbb{R} \}.
 \]
- The function \(r(t) \) has two components that both depend on \(t \):
 \[
 r(t) = (x(t), y(t)).
 \]
- Functions like \(r \) with values in \(\mathbb{R}^n \) are called **vector functions**.
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.

Choose x as parameter: $t = x$.

Solve y from the equation $2t + 3y = 6$:

$$y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t.$$

A parametrisation of ℓ is $\ell: r(t) = (t, 2 - \frac{2}{3}t), t \in \mathbb{R}$.

UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 6: Points, lines and planes
Example

Given is the line \(\ell : 2x + 3y = 6 \). Find a parametrisation of \(\ell \).

- Choose \(x \) as parameter: \(t = x \).
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.

- Choose x as parameter: $t = x$.
- Solve y from the equation $2t + 3y = 6$:
 \[
 y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t.
 \]
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.

- Choose x as parameter: $t = x$.
- Solve y from the equation $2t + 3y = 6$:
 \[y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t. \]
- A parametrisation of ℓ is
 \[\ell: \mathbf{r}(t) = \left(t, 2 - \frac{2}{3}t \right), \quad t \in \mathbb{R}. \]
Example

Given is the line \(\ell: 2x + 3y = 6 \). Find a parametrisation of \(\ell \).

- Choose \(x \) as parameter: \(t = x \).
- Solve \(y \) from the equation \(2t + 3y = 6 \):
 \[
y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t.
\]
- A parametrisation of \(\ell \) is
 \[
 \ell: \mathbf{r}(t) = \left(t, 2 - \frac{2}{3}t \right), \quad t \in \mathbb{R}.
 \]
- \[
 \begin{array}{cccc}
 t & x(t) & y(t) & \mathbf{r}(t) \\
 0 & 0 & 2 & (0, 2)
 \end{array}
 \]
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.

- Choose x as parameter: $t = x$.
- Solve y from the equation $2t + 3y = 6$:
 $$y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t.$$
- A parametrisation of ℓ is
 $$\ell: \mathbf{r}(t) = \left(t, 2 - \frac{2}{3}t\right), \quad t \in \mathbb{R}.$$
- \[
 \begin{array}{cccc}
 t & x(t) & y(t) & \mathbf{r}(t) \\
 0 & 0 & 2 & (0, 2) \\
 1.5 & 1.5 & 1 & (1.5, 1) \\
 \end{array}
 \]
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.

- Choose x as parameter: $t = x$.
- Solve y from the equation $2t + 3y = 6$:
 \[
y = \frac{6 - 2t}{3} = 2 - \frac{2}{3}t.
\]
- A parametrisation of ℓ is
 \[
 \ell: \mathbf{r}(t) = \left(t, 2 - \frac{2}{3}t \right), \quad t \in \mathbb{R}.
 \]

<table>
<thead>
<tr>
<th>t</th>
<th>$x(t)$</th>
<th>$y(t)$</th>
<th>$\mathbf{r}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(0, 2)</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>(1.5, 1)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>(3, 0)</td>
</tr>
</tbody>
</table>
Example

Find an equation for the line

\[\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}. \]
Example

Find an equation for the line

\[\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}. \]

- The parametric equations are

\[
\begin{align*}
 x &= 3t, \\
 y &= 2 - 2t.
\end{align*}
\]
Example

Find an equation for the line

\(\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}. \)

- The **parametric equations** are
 \[
 \begin{align*}
 x &= 3t, \\
 y &= 2 - 2t.
 \end{align*}
 \]
- Eliminate \(t \): from the first parametric equation follows
 \[t = \frac{x}{3}. \]
Example

Find an equation for the line

\[\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}. \]

- The parametric equations are
 \[
 \begin{align*}
 x &= 3t, \\
 y &= 2 - 2t.
 \end{align*}
 \]

- Eliminate \(t \): from the first parametric equation follows
 \[
 t = \frac{x}{3}.
 \]

- From the second parametric equation follows
 \[
 y = 2 - \frac{2}{3}x,
 \]
Example

Find an equation for the line

$$\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}.$$

- The **parametric equations** are
 $$\begin{cases}
 x = 3t, \\
 y = 2 - 2t.
 \end{cases}$$

- Eliminate t: from the first parametric equation follows
 $$t = \frac{x}{3}.$$

- From the second parametric equation follows
 $$y = 2 - \frac{2}{3}x,$$
 $$3y = 6 - 2x,$$
Example

Find an equation for the line

\(\ell : (3t, 2 - 2t), \quad t \in \mathbb{R}. \)

- **The parametric equations** are
 \[
 \begin{align*}
 x &= 3t, \\
 y &= 2 - 2t.
 \end{align*}
 \]
- **Eliminate** \(t \): from the first parametric equation follows
 \[t = \frac{x}{3}. \]
- **From the second parametric equation follows**
 \[
 y = 2 - \frac{2}{3}x, \\
 3y = 6 - 2x, \\
 2x + 3y = 6.
 \]
Theorem

For every line ℓ there exist numbers p_1, p_2, v_1 and v_2 such that

\[r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}. \]
Theorem

For every line ℓ there exist numbers p_1, p_2, v_1 and v_2 such that

$$r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.$$

Write $r(t)$ as follows:

$$r(t) = (p_1, p_2) + t(v_1, v_2).$$
Theorem

For every line \(\ell \) there exist numbers \(p_1, p_2, v_1 \) and \(v_2 \) such that

\[
\mathbf{r}(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.
\]

- Write \(\mathbf{r}(t) \) as follows:
 \[
 \mathbf{r}(t) = (p_1, p_2) + t(v_1, v_2).
 \]
- The vector \(\mathbf{p} = (p_1, p_2) \) is called a **support vector** of \(\ell \).
Theorem

For every line \(\ell \) there exist numbers \(p_1, p_2, v_1 \) and \(v_2 \) such that

\[
\mathbf{r}(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.
\]

- Write \(\mathbf{r}(t) \) as follows:
 \[
 \mathbf{r}(t) = (p_1, p_2) + t(v_1, v_2).
 \]
- The vector \(\mathbf{p} = (p_1, p_2) \) is called a support vector of \(\ell \).
- The vector \(\mathbf{v} = (v_1, v_2) \) is called a direction vector of \(\ell \).
Theorem

For every line ℓ there exist numbers p_1, p_2, v_1 and v_2 such that

$$r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.$$

- Write $r(t)$ as follows:
 $$r(t) = (p_1, p_2) + t(v_1, v_2).$$
- The vector $p = (p_1, p_2)$ is called a support vector of ℓ.
- The vector $v = (v_1, v_2)$ is called a direction vector of ℓ.
- Define $q = r(1)$, then
 $$r(1) = p + v, \quad \text{dus} \quad v = q - p.$$
Theorem

For every line ℓ there exist numbers p_1, p_2, v_1 and v_2 such that

$$r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.$$

- Write $r(t)$ as follows:
 $$r(t) = (p_1, p_2) + t(v_1, v_2).$$
- The vector $p = (p_1, p_2)$ is called a support vector of ℓ.
- The vector $v = (v_1, v_2)$ is called a direction vector of ℓ.
- Define $q = r(1)$, then
 $$r(1) = p + v, \quad \text{dus} \quad v = q - p.$$
- The parametrised vector form of ℓ is
 $$\ell: r(t) = p + tv \quad t \in \mathbb{R}.$$
Example

Find a support- and a direction vector of the line $\ell: 2x + 3y = 6$, and find a parametrised vector form of ℓ.

![Graph of the line ℓ with support- and direction vectors.](image-url)
Example

Find a support- and a direction vector of the line $\ell : 2x + 3y = 6$, and find a parametrised vector form of ℓ.

A parametrisation of ℓ is

$$\ell : \mathbf{r}(t) = (t, 2 - \frac{2}{3}t), \ t \in \mathbb{R}.$$
Example

Find a support- and a direction vector of the line \(\ell: 2x + 3y = 6 \), and find a parametrised vector form of \(\ell \).

- A parametrisation of \(\ell \) is
 \[
 \ell: \mathbf{r}(t) = (t, 2 - \frac{2}{3}t), \quad t \in \mathbb{R}.
 \]

- Write \(\mathbf{r}(t) \) as follows:
 \[
 \mathbf{r}(t) = (0, 2) + t(1, -\frac{2}{3}).
 \]
Example

Find a support- and a direction vector of the line \(\ell: 2x + 3y = 6 \), and find a parametrised vector form of \(\ell \).

A parametrisation of \(\ell \) is
\[
\ell: \mathbf{r}(t) = (t, 2 - \frac{2}{3}t), \quad t \in \mathbb{R}.
\]

Write \(\mathbf{r}(t) \) as follows:
\[
\mathbf{r}(t) = (0, 2) + t(1, -\frac{2}{3}).
\]

Choose a support- and a direction vector
\[
\mathbf{p} = (0, 2) \quad \text{and} \quad \mathbf{v} = (1, -\frac{2}{3})
\]
Example

Find a parametrisation and an equation of the line ℓ that passes through the points $P = (-1, -1)$ and $Q = (1, 3)$.
Example

Find a parametrisation and an equation of the line ℓ that passes through the points $P = (-1, -1)$ and $Q = (1, 3)$.

- Define $p = (-1, -1)$ and $q = (1, 3)$.
Example

Find a parametrisation and an equation of the line \(\ell \) that passes through the points \(P = (-1, -1) \) and \(Q = (1, 3) \).

- Define \(p = (-1, -1) \) and \(q = (1, 3) \).
- Define \(v = q - p = (2, 4) \), then a parametrisation of \(\ell \) is
 \[
 \ell : r(t) = p + tv = (-1, -1) + t(2, 4) \\
 = (2t - 1, 4t - 1).
 \]
Example

Find a parametrisation and an equation of the line ℓ that passes through the points $P = (-1, -1)$ and $Q = (1, 3)$.

- Define $p = (-1, -1)$ and $q = (1, 3)$.
- Define $v = q - p = (2, 4)$, then a parametrisation of ℓ is
 \[
 \ell: r(t) = p + tv = (-1, -1) + t(2, 4) \\
 = (2t - 1, 4t - 1).
 \]
- The parametric equations are
 \[
 \begin{cases}
 x = 2t - 1, \\
 y = 4t - 1,
 \end{cases}
 \]
 hence $t = \frac{x + 1}{2}$.
Example

Find a parametrisation and an equation of the line ℓ that passes through the points $P = (-1, -1)$ and $Q = (1, 3)$.

- Define $p = (-1, -1)$ and $q = (1, 3)$.
- Define $v = q - p = (2, 4)$, then a parametrisation of ℓ is $\ell: r(t) = p + tv = (-1, -1) + t(2, 4)$
 $$= (2t - 1, 4t - 1).$$
- The parametric equations are
 $$\begin{cases} x = 2t - 1, \\ y = 4t - 1, \end{cases}$$
 hence $t = \frac{x+1}{2}$.
- Substitute this in the second equation:
 $$y = 2(x + 1) - 1 = 2x + 1 \quad \text{or} \quad y - 2x = 1$$
1. Let \(P = (2, 1) \) and \(Q = (-1, -1) \). The line passing through \(P \) and \(Q \) is called \(\ell \).

 (i) Find an equation of \(\ell \).
 (ii) Find a direction vector and a support vector of \(\ell \).

2. The line \(\ell \) is defined by the equation \(y = 2x + 1 \). Find a parametrised vector form for \(\ell \).

3. The line \(\ell \) has parametrisation \(\mathbf{x}(t) = \left(1 - \frac{1}{2} t, t - 1 \right) \) with \(t \in \mathbb{R} \).

 (i) Find an equation of \(\ell \).
 (ii) Find the intersection of \(\ell \) and the line \(m \) defined by the parametrised vector form \((-2, 2) + t(1, 1) \).

4. The line \(\ell \) has support vector \((3, 2)\) and direction vector \((2, -1)\). The line \(m \) has support vector \((-2, -3)\) and direction vector \((1, 2)\). Find the intersection point of \(\ell \) and \(m \).
Definition

Let \(p \) and \(v \neq 0 \) be vectors. The **parametrised vector form** of the line through \(p \) and parallel to \(v \) is

\[
r(t) = p + tv, \quad t \in \mathbb{R}.
\]
Definition

Let \(\mathbf{p} \) and \(\mathbf{v} \neq 0 \) be vectors. The **parametrised vector form** of the line through \(\mathbf{p} \) and parallel to \(\mathbf{v} \) is

\[
\mathbf{r}(t) = \mathbf{p} + t\mathbf{v}, \quad t \in \mathbb{R}.
\]

- The vector \(\mathbf{p} \) is called a **support vector** and the vector \(\mathbf{v} \) is called a **direction vector** of the line.
Definition

Let \(p \) and \(v \neq 0 \) be vectors. The **parametrised vector form** of the line through \(p \) and parallel to \(v \) is

\[
r(t) = p + tv, \quad t \in \mathbb{R}.
\]

- The vector \(p \) is called a **support vector** and the vector \(v \) is called a **direction vector** of the line.
- If \(r(t) = (f(t), g(t), h(t)) \), then the equations

\[
\begin{align*}
x &= f(t), \\
y &= g(t), \\
z &= h(t)
\end{align*}
\]

are called the **parametric equations** of the line.
Example 1

Find the parametric equations of the line ℓ through $(-2, 0, 4)$ in the direction $v = 2i + 4j - 2k$

$= (2, 4, -2)$.
Example

Find the parametric equations of the line ℓ through $(-2, 0, 4)$ in the direction $v = 2i + 4j - 2k$

$= (2, 4, -2)$.

- Define $p = P_0 = (-2, 0, 4)$.
Example 1

Find the parametric equations of the line ℓ through $(-2, 0, 4)$ in the direction
$$v = 2i + 4j - 2k$$
$$= (2, 4, -2).$$

- Define $p = P_0 = (-2, 0, 4)$.
- A parametrisation of ℓ is
 $$\ell: \mathbf{r}(t) = p + tv = (-2, 0, 4) + t(2, 4, -2)$$
 $$= (2t - 2, 4t, 4 - 2t).$$
Example

Find the parametric equations of the line \(\ell \) through \((-2, 0, 4)\) in the direction
\[
v = 2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}
\]
\[
= (2, 4, -2).
\]

- Define \(\mathbf{p} = P_0 = (-2, 0, 4) \).
- A parametrisation of \(\ell \) is
\[
\ell: \mathbf{r}(t) = \mathbf{p} + t\mathbf{v} = (-2, 0, 4) + t(2, 4, -2)
\]
\[
= (2t - 2, 4t, 4 - 2t).
\]
- The parametric equations of \(\ell \) are
\[
x = 2t - 2, \quad y = 4t, \quad z = 4 - 2t, \quad t \in \mathbb{R}.
\]
Example

Find the parametric equations of the line ℓ through $P = (-3, 2, -3)$ and $Q = (1, -1, 4)$.

\[
\begin{align*}
\text{Example 2} \\
\text{Example 2} \\
\text{Example 2}
\end{align*}
\]
Example

Find the parametric equations of the line ℓ through $P = (-3, 2, -3)$ and $Q = (1, -1, 4)$.

- Define $\mathbf{p} = \overrightarrow{OP} = (-3, 2, -3)$ and $\mathbf{v} = \overrightarrow{PQ} = (1, -1, 4) - (-3, 2, -3) = (4, -3, 7)$.

Example

Find the parametric equations of the line ℓ through $P = (-3, 2, -3)$ and $Q = (1, -1, 4)$.

- Define $\mathbf{p} = \overrightarrow{OP} = (-3, 2, -3)$ and $\mathbf{v} = \overrightarrow{PQ} = (1, -1, 4) - (-3, 2, -3) = (4, -3, 7)$.
- A parametrisation of ℓ is

 \[\ell: \mathbf{r}(t) = \mathbf{p} + t\mathbf{v} = (-3, 2, -3) + t(4, -3, 7) = (4t - 3, 2 - 3t, 7t - 3). \]
Example

Find the parametric equations of the line \(\ell \) through \(P = (−3, 2, −3) \) and \(Q = (1, −1, 4) \).

- Define \(\mathbf{p} = \overrightarrow{OP} = (−3, 2, −3) \) and \(\mathbf{v} = \overrightarrow{PQ} = (1, −1, 4) − (−3, 2, −3) = (4, −3, 7) \).
- A parametrisation of \(\ell \) is
 \[
 \ell: \mathbf{r}(t) = \mathbf{p} + t\mathbf{v} = (−3, 2, −3) + t(4, −3, 7)
 = (4t − 3, 2 − 3t, 7t − 3).
 \]
- The parametric equations of \(\ell \) are
 \[
 x = 4t − 3, \quad y = 2 − 3t, \quad z = 7t − 3, \quad t \in \mathbb{R}.
 \]
Summary

- A parametrisation of the line through a point P parallel to a vector $v \neq 0$ is
 \[p + tv, \quad t \in \mathbb{R}, \]
 with support vector $p = \overrightarrow{OP}$ and direction vector v.
- A parametrisation of the line through two points P and Q is
 \[p + tv, \quad t \in \mathbb{R} \]
 with support vector $p = \overrightarrow{OP}$ and direction vector $v = \overrightarrow{PQ}$.
Summary

- A parametrisation of the line through a point \(P \) parallel to a vector \(v \neq 0 \) is
 \[p + tv, \quad t \in \mathbb{R}, \]
 with support vector \(p = \overrightarrow{OP} \) and direction vector \(v \).

- A parametrisation of the line through two points \(P \) and \(Q \) is
 \[p + tv, \quad t \in \mathbb{R} \]
 with support vector \(p = \overrightarrow{OP} \) and direction vector \(v = \overrightarrow{PQ} \).

Warning

Parametrisations are not unique:

- Every point on the line can be chosen as support vector.
- Every non-zero vector parallel to the line can be chosen as direction vector.
Suppose two lines ℓ and m have parametrised vector forms $p + tv$ and $q + sw$ respectively.
Suppose two lines \(\ell \) and \(m \) have parametrised vector forms \(\mathbf{p} + tv \) and \(\mathbf{q} + sw \) respectively.

An intersection is found if there are values for \(t \) and \(s \) such that

\[
\mathbf{p} + tv = \mathbf{q} + sw.
\]

\((*)\)
Intersection of lines in \mathbb{R}^3

- Suppose two lines ℓ and m have parametrised vector forms $\mathbf{p} + tv$ and $\mathbf{q} + sw$ respectively.
- An intersection is found if there are values for t and s such that
 \[\mathbf{p} + tv = \mathbf{q} + sw. \] (*)
- Since vector equations in \mathbb{R}^3 yield *three* equations, equation (*) may fail to have a solution, even if ℓ and m are not parallel.
Suppose two lines ℓ and m have parametrised vector forms $\mathbf{p} + tv$ and $\mathbf{q} + sw$ respectively.

An intersection is found if there are values for t and s such that

$$\mathbf{p} + tv = \mathbf{q} + sw.$$ \hfill (\ast)

Since vector equations in \mathbb{R}^3 yield three equations, equation (\ast) may fail to have a solution, even if ℓ and m are not parallel.

Non-parallel lines that do not intersect are called skew.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.
Example

Let ℓ be the line with support vector $(-3, -3, 1)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

 \[-3 + 2t = 2 - s \]
 \[-3 + t = -3 + 2s \]
 \[1 + t = -2 + 4s \]
Example

Let ℓ be the line with support vector $(-3, -3, 1)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

\[
-3 + 2t = 2 - s \\
-3 + t = -3 + 2s \\
1 + t = -2 + 4s
\]

- From the first equation follows: $s = 5 - 2t$.

Lines ℓ and m do no intersect.
Example

Let ℓ be the line with support vector $(-3, -3, 1)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

 \begin{align*}
 -3 + 2t &= 2 - s \\
 -3 + t &= -3 + 2s \\
 1 + t &= -2 + 4s
 \end{align*}

- From the first equation follows: $s = 5 - 2t$.
- Substitute this in the second equation:

 \begin{align*}
 -3 + t &= -3 + 2(5 - 2t) = 7 - 4t.
 \end{align*}

 From this follows: $t = 2$.

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

- Solve \(s \) and \(t \) from

 \[

 \begin{align*}
 -3 + 2t &= 2 - s \\
 -3 + t &= -3 + 2s \\
 1 + t &= -2 + 4s
 \end{align*}

 - From the first equation follows: \(s = 5 - 2t \).
 - Substitute this in the second equation:

 \[-3 + t = -3 + 2(5 - 2t) = 7 - 4t. \text{ From this follows: } t = 2.\]
 - This implies \(s = 5 - 2 \cdot 2 = 1.\)
Example

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

- Solve \(s \) and \(t \) from

 \[
 -3 + 2t = 2 - s \\
 -3 + t = -3 + 2s \\
 1 + t = -2 + 4s
 \]

- From the first equation follows: \(s = 5 - 2t \).
- Substitute this in the second equation:

 \[-3 + t = -3 + 2(5 - 2t) = 7 - 4t. \] From this follows: \(t = 2 \).
- This implies \(s = 5 - 2 \cdot 2 = 1 \).
- Now check the last equation: \(1 + t = 3 \) and \(-2 + 4s = 2 \): the equation does not hold.

Lines \(\ell \) and \(m \) do not intersect.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

- Solve \(s \) and \(t \) from

 \[
 -3 + 2t = 2 - s \\
 -3 + t = -3 + 2s \\
 1 + t = -2 + 4s
 \]

- From the first equation follows: \(s = 5 - 2t \).
- Substitute this in the second equation:

 \[
 -3 + t = -3 + 2(5 - 2t) = 7 - 4t. \quad \text{From this follows: } t = 2.
 \]
- This implies \(s = 5 - 2 \cdot 2 = 1 \).
- Now check the last equation: \(1 + t = 3 \) and \(-2 + 4s = 2 \): the equation does not hold.
- Lines \(\ell \) and \(m \) do no intersect.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 0)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.
Example

Let ℓ be the line with support vector $(-3, -3, 0)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

\[
\begin{align*}
-3 + 2t &= 2 - s \\
-3 + t &= -3 + 2s \\
t &= -2 + 4s
\end{align*}
\]
Example

Let ℓ be the line with support vector $(-3, -3, 0)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

 \[-3 + 2t = 2 - s \]
 \[-3 + t = -3 + 2s \]
 \[t = -2 + 4s \]

- From the first equation follows: $s = 5 - 2t$.
Example

Let ℓ be the line with support vector $(-3, -3, 0)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

 \[
 -3 + 2t = 2 - s \\
 -3 + t = -3 + 2s \\
 t = -2 + 4s
 \]

 - From the first equation follows: $s = 5 - 2t$.
 - Substitute this in the second equation:

 \[
 -3 + t = -3 + 2(5 - 2t) = 7 - 4t.
 \]

 From this follows: $t = 2$.

 The intersection point is $(1, -1, 2)$.
Example

Let ℓ be the line with support vector $(-3, -3, 0)$ and direction vector $(2, 1, 1)$. Let m be the line with support vector $(2, -3, -2)$ and direction vector $(-1, 2, 4)$. Determine if ℓ and m intersect, and if so, find the intersection point.

- Solve s and t from

\[
\begin{align*}
-3 + 2t &= 2 - s \\
-3 + t &= -3 + 2s \\
t &= -2 + 4s
\end{align*}
\]

- From the first equation follows: $s = 5 - 2t$.
- Substitute this in the second equation:

\[
-3 + t = -3 + 2(5 - 2t) = 7 - 4t. \text{ From this follows: } t = 2.
\]
- This implies $s = 5 - 2 \cdot 2 = 1$.

The intersection point is $(1, -1, 2)$.

Example

Let \(\ell \) be the line with support vector \((-3, -3, 0)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

- Solve \(s \) and \(t \) from

 \[
 -3 + 2t = 2 - s \\
 -3 + t = -3 + 2s \\
 t = -2 + 4s
 \]

- From the first equation follows: \(s = 5 - 2t \).

- Substitute this in the second equation:

 \[
 -3 + t = -3 + 2(5 - 2t) = 7 - 4t. \text{ From this follows: } t = 2.
 \]

- This implies \(s = 5 - 2 \cdot 2 = 1 \).

- Now check the last equation: \(t = 2 \) and \(-2 + 4s = 2\): the equation holds.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 0)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

- Solve \(s \) and \(t \) from

 \[
 -3 + 2t = 2 - s \\
 -3 + t = -3 + 2s \\
 t = -2 + 4s
 \]

- From the first equation follows: \(s = 5 - 2t \).
- Substitute this in the second equation:

 \[
 -3 + t = -3 + 2(5 - 2t) = 7 - 4t. \text{ From this follows: } t = 2.
 \]
- This implies \(s = 5 - 2 \cdot 2 = 1 \).
- Now check the last equation: \(t = 2 \) and \(-2 + 4s = 2\): the equation holds.
- The intersection point is \((1, -1, 2)\).
Exercises

- Section 12.5: 1, 3, 5, 61.
Planes in space

Definition

A plane in \mathbb{R}^3 is defined by an equation of the form

$$M : ax + by + cz = d$$

with a, b, c and d real numbers.

Examples:
Definition

A plane in \(\mathbb{R}^3 \) is defined by an equation of the form

\[
M : ax + by + cz = d
\]

with \(a, b, c \) and \(d \) real numbers.

Examples:

- The plane \(M_1 \) defined by
 \[
 M_1 : x + y + z = 1
 \]
 passes through the points \((1, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\).
Planes in space

Definition

A plane in \mathbb{R}^3 is defined by an equation of the form

$$M : ax + by + cz = d$$

with a, b, c and d real numbers.

Examples:

- The plane M_1 defined by
 $$M_1 : x + y + z = 1$$
 passes through the points $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$.

- The plane M_2 defined by
 $$M_2 : x + y + z = 0$$
 passes through O and is parallel to M_1.
Definition

A plane in \mathbb{R}^3 is defined by an equation of the form

$$M : ax + by + cz = d$$

with a, b, c and d real numbers.

Examples:

- The plane M_1 defined by
 $$M_1 : x + y + z = 1$$
 passes through the points $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$.

- The plane M_2 defined by
 $$M_2 : x + y + z = 0$$
 passes through O and is parallel to M_1.

- The plane M_3 defined by
 $$M_3 : 2y = 3$$
 is the plane through $(0, 3/2, 0)$ parallel to the xz-plane.
Definition

A support vector of a plane M is a vector $p = \overrightarrow{OP}$ with P a point of M.

Suppose M is defined by $ax + by + cz = d$, and let $P = (x_0, y_0, z_0)$ be a point in M, then $ax_0 + by_0 + cz_0 = d$, hence $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ for all (x, y, z) in M.

Definition

The equation $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ is called the vector equation of M.

Definition

A support vector of a plane M is a vector $\mathbf{p} = \overrightarrow{OP}$ with P a point of M.

Suppose M is defined by $ax + by + cz = d$, and let $P = (x_0, y_0, z_0)$ be a point in M, then $ax_0 + by_0 + cz_0 = d$, hence

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

for all $(x, y, z,)$ in M.

Definition

A support vector of a plane M is a vector $\mathbf{p} = \overrightarrow{OP}$ with P a point of M.

Suppose M is defined by $ax + by + cz = d$, and let $P = (x_0, y_0, z_0)$ be a point in M, then $ax_0 + by_0 + cz_0 = d$, hence

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

for all $(x, y, z,)$ in M.

Definition

The equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

is called the vector equation of M.

Definition

A **normal vector** of a plane M is a vector $\mathbf{n} \neq 0$ that is perpendicular to M.
Definition

A normal vector of a plane M is a vector $\mathbf{n} \neq 0$ that is perpendicular to M.

Let M be a plane defined by the vector equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,$$

then

$$\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0) = 0$$

for all (x, y, z) in M.

Definition

The equation $\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0) = 0$ is called the normal equation of M.

UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 6: Points, lines and planes
Definition

A normal vector of a plane M is a vector $\mathbf{n} \neq \mathbf{0}$ that is perpendicular to M.

Let M be a plane defined by the vector equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,$$

then

$$\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0)$$

$$= \mathbf{n} \cdot ((x, y, z) - (x_0, y_0, z_0))$$
Normal vectors

Definition

A normal vector of a plane M is a vector $\mathbf{n} \neq \mathbf{0}$ that is perpendicular to M.

Let M be a plane defined by the vector equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,$$

then

$$ \begin{align*}
(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) & = (a, b, c) \cdot ((x, y, z) - (x_0, y_0, z_0)) \\
& = 0 \quad \text{for all } (x, y, z) \text{ in } M.
\end{align*} $$
Definition

A normal vector of a plane M is a vector $\mathbf{n} \neq \mathbf{0}$ that is perpendicular to M.

- Let M be a plane defined by the vector equation $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$, then
 $$(a, b, c) \cdot (x - x_0, y - y_0, z - z_0)$$
 $$= (a, b, c) \cdot ((x, y, z) - (x_0, y_0, z_0))$$
 $$= 0 \quad \text{for all} \ (x, y, z) \ \text{in} \ M.$$

- Define $\mathbf{x} = (x, y, z), \ \mathbf{p} = (x_0, y_0, z_0) \ \text{and} \ \mathbf{n} = (a, b, c)$, then
 $$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0 \quad \text{for all} \ \mathbf{x} \ \text{in} \ M.$$
Definition

A normal vector of a plane M is a vector $\mathbf{n} \neq \mathbf{0}$ that is perpendicular to M.

- Let M be a plane defined by the vector equation
 \[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0, \]
 then
 \[
 (a, b, c) \cdot (x - x_0, y - y_0, z - z_0) \\
 = (a, b, c) \cdot ((x, y, z) - (x_0, y_0, z_0)) \\
 = 0 \quad \text{for all } (x, y, z,) \text{ in } M.
 \]

- Define $\mathbf{x} = (x, y, z)$, $\mathbf{p} = (x_0, y_0, z_0)$ and $\mathbf{n} = (a, b, c)$, then
 \[
 n \cdot (x - p) = 0 \quad \text{for all } \mathbf{x} \text{ in } M.
 \]

Definition

The equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ is called the normal equation of M.
The normal equation

Theorem

Let M be defined by the normal equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$, where \mathbf{n} is a normal vector of M, and let $\mathbf{p} = (x_0, y_0, z_0)$ be a support vector. If $\mathbf{X} = (x, y, z)$ is a point of M then $\mathbf{n} \perp \overrightarrow{PX}$.

- Note that $\overrightarrow{PX} = \mathbf{x} - \mathbf{p}$.
Example

Find an equation of the plane M through $(-3, 0, 7)$ orthogonal to $n = (5, 2, -1)$.
Example

Find an equation of the plane M through $(-3, 0, 7)$ orthogonal to $n = (5, 2, -1)$.

- Define $p = (-3, 0, 7)$, then the normal equation $n \cdot (x - p) = 0$ gives:

$$\begin{align*}
(5, 2, -1) \cdot ((x, y, z) - (-3, 0, 7)) &= 0, \\
\text{or} \\
(5, 2, -1) \cdot (x - (-3), y - 0, z - 7) &= 0.
\end{align*}$$
The normal equation

Example

Find an equation of the plane M through $(-3, 0, 7)$ orthogonal to $n = (5, 2, -1)$.

- Define $p = (-3, 0, 7)$, then the normal equation $n \cdot (x - p) = 0$ gives:

 \[
 (5, 2, -1) \cdot ((x, y, z) - (-3, 0, 7)) = 0,
 \]

 or

 \[
 (5, 2, -1) \cdot (x - (-3), y - 0, z - 7) = 0.
 \]

- The vector equation of M is

 \[
 5(x + 3) + 2y - (z - 7) = 0.
 \]
The normal equation

Example

Find an equation of the plane M through $(-3, 0, 7)$ orthogonal to $\mathbf{n} = (5, 2, -1)$.

- Define $\mathbf{p} = (-3, 0, 7)$, then the normal equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ gives:

 $(5, 2, -1) \cdot ((x, y, z) - (-3, 0, 7)) = 0,$

 or

 $(5, 2, -1) \cdot (x + 3, y - 0, z - 7) = 0.$

- The vector equation of M is

 $5(x + 3) + 2y - (z - 7) = 0.$

- Simplification gives

 $5x + 2y - z = -22.$
Example

Find a normal equation for the plane $M: y - 2z = 4$.

Write the equation as follows:

$$0 \cdot x + 1 \cdot y + (-2) \cdot z = 4.$$

A normal vector is $n = (0, 1, -2)$.

NB The components of n are the coefficients of the equation.

For a point P in the plane we choose $x = z = 0$. Then $y = 4$, so $P = (0, 4, 0)$ gives support vector $OP = p = (0, 4, 0)$.

A normal equation of M is $$(0, 1, -2) \cdot (x - (0, 4, 0)) = 0.$$

NB Every point of M can be used as support vector, for instance $p' = (1, 6, 1)$ also works.
Example

Find a normal equation for the plane $M : y - 2z = 4$.

- Write the equation as follows:

 $$0 \cdot x + 1 \cdot y + (-2) \cdot z = 4.$$
The normal equation

Example

Find a normal equation for the plane $M : y - 2z = 4$.

- Write the equation as follows:

 $$0 \cdot x + 1 \cdot y + (-2) \cdot z = 4.$$

- A normal vector is $\mathbf{n} = (0, 1, -2)$.

NB The components of \mathbf{n} are the coefficients of the equation.
Example

Find a normal equation for the plane $M : y - 2z = 4$.

- Write the equation as follows:

 $$0 \cdot x + 1 \cdot y + (-2) \cdot z = 4.$$

- A normal vector is $\mathbf{n} = (0, 1, -2)$.

NB The components of \mathbf{n} are the coefficients of the equation.

- For a point P in the plane we choose $x = z = 0$. Then $y = 4$, so $P = (0, 4, 0)$ gives support vector $\overrightarrow{OP} = \mathbf{p} = (0, 4, 0)$.

Example

Find a normal equation for the plane $M: y - 2z = 4$.

- Write the equation as follows:
 $$0 \cdot x + 1 \cdot y + (-2) \cdot z = 4.$$
- A normal vector is $\mathbf{n} = (0, 1, -2)$.

NB The components of \mathbf{n} are the coefficients of the equation.

- For a point P in the plane we choose $x = z = 0$. Then $y = 4$, so $P = (0, 4, 0)$ gives support vector $\overrightarrow{OP} = \mathbf{p} = (0, 4, 0)$.

- A normal equation of M is
 $$(0, 1, -2) \cdot (x - (0, 4, 0)) = 0.$$

NB Every point of M can be used as support vector, for instance $\mathbf{p'} = (1, 6, 1)$ also works.
Example

Find an equation for the plane \(M \) through the points \(A = (0, 0, 1) \), \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).
Example 7

Find an equation for the plane M through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- Suppose the equation is $ax + by + cz = d$ with yet to determine constants a, b, c and d.

- Substitute this in the equation:

 $$
 \frac{1}{2}dx + \frac{1}{3}dy + dz = d.
 $$

- Divide left- and right-hand side by d:

 $$
 \frac{1}{2}x + \frac{1}{3}y + z = 1.
 $$

- Avoid fractions by multiplying with 6:

 $$
 3x + 2y + 6z = 6.
 $$

UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 6: Points, lines and planes
Example

Find an equation for the plane \(M \) through the points \(A = (0, 0, 1) \), \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- Suppose the equation is \(ax + by + cz = d \) with yet to determine constants \(a, b, c \) and \(d \).
- The points \(A, B \) and \(C \) all lie in the plane, this gives three equations:
 \[
 \begin{align*}
 A \in M & \Rightarrow \quad c = d \quad \Rightarrow \quad c = d \\
 B \in M & \Rightarrow \quad 2a = d \quad \Rightarrow \quad a = \frac{1}{2}d \\
 C \in M & \Rightarrow \quad 3b = d \quad \Rightarrow \quad b = \frac{1}{3}d
 \end{align*}
 \]
Example

Find an equation for the plane \(M \) through the points \(A = (0, 0, 1) \), \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- Suppose the equation is \(ax + by + cz = d \) with yet to determine constants \(a, b, c \) and \(d \).
- The points \(A, B \) and \(C \) all lie in the plane, this gives three equations:

 \[
 \begin{align*}
 A \in M & \implies c = d \implies c = d \\
 B \in M & \implies 2a = d \implies a = \frac{1}{2}d \\
 C \in M & \implies 3b = d \implies b = \frac{1}{3}d
 \end{align*}
 \]

- Substitute this in the equation: \(\frac{1}{2}dx + \frac{1}{3}dy + dz = d \).
Example 7

Find an equation for the plane M through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

Suppose the equation is $ax + by + cz = d$ with yet to determine constants a, b, c and d.

The points A, B and C all lie in the plane, this gives three equations:

- $A \in M \Rightarrow c = d \Rightarrow c = d$
- $B \in M \Rightarrow 2a = d \Rightarrow a = \frac{1}{2}d$
- $C \in M \Rightarrow 3b = d \Rightarrow b = \frac{1}{3}d$

Substitute this in the equation: $\frac{1}{2}dx + \frac{1}{3}dy + dz = d$.

Divide left- and right-hand side by d: $\frac{1}{2}x + \frac{1}{3}y + z = 1$.
A plane through three points

Example

Find an equation for the plane M through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- Suppose the equation is $ax + by + cz = d$ with yet to determine constants a, b, c and d.
- The points A, B and C all lie in the plane, this gives three equations:
 \[
 A \in M \implies c = d \implies c = d
 \]
 \[
 B \in M \implies 2a = d \implies a = \frac{1}{2} d
 \]
 \[
 C \in M \implies 3b = d \implies b = \frac{1}{3} d
 \]
- Substitute this in the equation: $\frac{1}{2} dx + \frac{1}{3} dy + dz = d$.
- Divide left- and right-hand side by d: $\frac{1}{2} x + \frac{1}{3} y + z = 1$.
- Avoid fractions by multiplying with 6: $3x + 2y + 6z = 6$.
Exercises

Section 12.5: 21, 23, 25, 27, 29.
Unlike lines in \mathbb{R}^2, lines in \mathbb{R}^3 cannot be described by one equation: a linear equation $ax + by + cz = d$ describes a plane.
Unlike lines in \mathbb{R}^2, lines in \mathbb{R}^3 cannot be described by one equation: a linear equation $ax + by + cz = d$ describes a plane.

In order to describe a line you need two equations:

$$\begin{cases}
ax + by + cz = d \\
px + qy + rz = s
\end{cases}$$
Unlike lines in \mathbb{R}^2, lines in \mathbb{R}^3 cannot be described by one equation: a linear equation $ax + by + cz = d$ describes a plane.

In order to describe a line you need two equations:

\[
\begin{align*}
ax + by + cz &= d \\
px + qy + rz &= s
\end{align*}
\]

Regard a line as the intersection of two planes:

\[
\begin{align*}
ax + by + cz &= d \\
px + qy + rz &= s
\end{align*}
\]
Example

Give a parametrisation of the line described by the equations

\[
\begin{align*}
x + y - 2z &= -1 \\
2x - y + z &= 2
\end{align*}
\]
Example

Give a parametrisation of the line described by the equations

\[
\begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
\end{align*}
\]

Choose one of the variables as parameter, for instance: \(x = t \)
Example

Give a parametrisation of the line described by the equations
\[
\begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
\end{align*}
\]

- Choose one of the variables as parameter, for instance: \(x = t \)
- Replace \(x \) by \(t \) in the given equations:

\[
\begin{align*}
 y - 2z &= -1 - t \\
 -y + z &= 2 - 2t
\end{align*}
\]
Example

Give a parametrisation of the line described by the equations

\[
\begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
\end{align*}
\]

- Choose one of the variables as parameter, for instance: \(x = t\)
- Replace \(x\) by \(t\) in the given equations:

\[
\begin{align*}
 y - 2z &= -1 - t \\
 -y + z &= 2 - 2t
\end{align*}
\]

(1)

- Express \(y\) and \(z\) in \(t\) by solving system (1). For instance, from the first equation follows

\[
y = 2z - 1 - t.
\]
Example

Give a parametrisation of the line described by the equations

\[
\begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
\end{align*}
\]

- Choose one of the variables as parameter, for instance: \(x = t \)
- Replace \(x \) by \(t \) in the given equations:

 \[
 \begin{align*}
 y - 2z &= -1 - t \\
 -y + z &= 2 - 2t
 \end{align*}
 \]

 \((1) \)

- Express \(y \) and \(z \) in \(t \) by solving system (1). For instance, from the first equation follows

 \[
 y = 2z - 1 - t
 \]

 \((2) \)

- Plug this in the second equation of (1) and solve \(z \):

 \[
 -(2z - 1 - t) + z = 2 - 2t \quad \Rightarrow \quad z = -1 + 3t
 \]
Example (continued)

- Use equation (2) to express y in t:

$$y = 2z - 1 - t = 2(-1 + 3t) - 1 - t = -3 + 5t$$
Use equation (2) to express y in t:

$$y = 2z - 1 - t = 2(-1 + 3t) - 1 - t = -3 + 5t$$

Summary: the boxed equations express x, y and z in t and therefore can be used as parametric equations for the line:

$$\begin{cases} x = t \\ y = -3 + 5t \\ z = -1 + 3t \end{cases}$$
Example (continued)

- Use equation (2) to express \(y \) in \(t \):

\[
y = 2z - 1 - t = 2(-1 + 3t) - 1 - t = -3 + 5t
\]

- Summary: the boxed equations express \(x, y \) and \(z \) in \(t \) and therefore can be used as parametric equations for the line:

\[
\begin{align*}
x &= t \\
y &= -3 + 5t \\
z &= -1 + 3t
\end{align*}
\]

- The parametrised vector form then is

\[
\mathbf{x} = (x, y, z) = (0, -3, -1) + t(1, 5, 3).
\]
Example (continued)

- Use equation (2) to express y in t:

$$y = 2z - 1 - t = 2(-1 + 3t) - 1 - t = -3 + 5t$$

- Summary: the boxed equations express x, y and z in t and therefore can be used as parametric equations for the line:

$$\begin{cases}
 x = t \\
 y = -3 + 5t \\
 z = -1 + 3t
\end{cases}$$

- The parametrised vector form then is

$$\mathbf{x} = (x, y, z) = (0, -3, -1) + t(1, 5, 3).$$

- A support vector then is $(0, -3, -1)$, and as direction vector you can use $(1, 5, 3)$.
Check that
\[
\begin{align*}
x + y - 2z &= -1 \\
2x - y + z &= 2
\end{align*}
\]
is the line through \(p = (0, -3, 1) \) and in direction \(v = (1, 5, 3) \).
Check your answer!

- Check that
 \[
 \begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
 \end{align*}
 \]
 is the line through \(p = (0, -3, 1) \) and in direction \(v = (1, 5, 3) \).

- Let \(x = 0, \ y = -3, \ z = -1 \), then
 \[
 \begin{align*}
 x + y - 2z &= 0 - 3 + 2 = -1 \\
 2x - y + z &= 0 + 3 - 1 = 2
 \end{align*}
 \]
Check your answer!

- Check that
 \[
 \begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
 \end{align*}
 \]
 is the line through \(p = (0, -3, 1) \) and in direction \(v = (1, 5, 3) \).

- Let \(x = 0, y = -3, z = -1 \), then
 \[
 \begin{align*}
 x + y - 2z &= 0 - 3 + 2 = -1 \\
 2x - y + z &= 0 + 3 - 1 = 2
 \end{align*}
 \]

- The normal vectors of the planes \(x + y - 2z = -1 \) and \(2x - y + z = 2 \) are \(n_1 = (1, 1, -2) \) and \(n_2 = (2, -1, 1) \) respectively.
Check your answer!

- Check that
 \[
 \begin{align*}
 x + y - 2z &= -1 \\
 2x - y + z &= 2
 \end{align*}
 \]
 is the line through \(p = (0, -3, 1) \) and in direction \(\mathbf{v} = (1, 5, 3) \).

- Let \(x = 0, \ y = -3, \ z = -1 \), then
 \[
 \begin{align*}
 x + y - 2z &= 0 - 3 + 2 = -1 \\
 2x - y + z &= 0 + 3 - 1 = 2
 \end{align*}
 \]

- The normal vectors of the planes \(x + y - 2z = -1 \) and \(2x - y + z = 2 \) are \(\mathbf{n}_1 = (1, 1, -2) \) and \(\mathbf{n}_2 = (2, -1, 1) \) respectively.

- Check that \(\mathbf{v} \perp \mathbf{n}_1 \) and \(\mathbf{v} \perp \mathbf{n}_2 \):
 \[
 \mathbf{v} \cdot \mathbf{n}_1 = 1 + 5 - 6 = 0,
 \]
 and
 \[
 \mathbf{v} \cdot \mathbf{n}_2 = 2 - 5 + 3 = 0.
 \]
Example 10

The line \(\ell \) is defined by the parametrisation

\[
x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.
\]

Find the intersection of \(\ell \) and the plane \(3x + 2y + 6z = 6 \).
Example

The line \(\ell \) is defined by the parametrisation

\[
x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.
\]

Find the intersection of \(\ell \) and the plane \(3x + 2y + 6z = 6 \).

- Suppose the intersection is
 \[
 x_0 = \left(\frac{8}{3} + 2t, -2t, 1 + t \right).
 \] (1)
Example

The line ℓ is defined by the parametrisation

$$
x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.
$$

Find the intersection of ℓ and the plane $3x + 2y + 6z = 6$.

- Suppose the intersection is
 $$
x_0 = \left(\frac{8}{3} + 2t, -2t, 1 + t\right).
 \tag{1}
$$
- The point x_0 lies on the plane, so
 $$
 3\left(\frac{8}{3} + 2t\right) + 2(-2t) + 6(1 + t) = 6.
 $$
Example 10

The line \(\ell \) is defined by the parametrisation

\[
\begin{align*}
 x &= \frac{8}{3} + 2t, \\
 y &= -2t, \\
 z &= 1 + t,
\end{align*}
\]

\(t \in \mathbb{R} \).

Find the intersection of \(\ell \) and the plane \(3x + 2y + 6z = 6 \).

- Suppose the intersection is
 \[
 \mathbf{x}_0 = \left(\frac{8}{3} + 2t, -2t, 1 + t \right).
 \]

- The point \(\mathbf{x}_0 \) lies on the plane, so
 \[
 3\left(\frac{8}{3} + 2t\right) + 2(-2t) + 6(1 + t) = 6.
 \]

- Solve \(t \) from this equation:
 \[
 8 + 6t - 4t + 6 + 6t = 6,
 \]

which implies \(t = -1 \).
Example

The line ℓ is defined by the parametrisation

\[
x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.
\]

Find the intersection of ℓ and the plane $3x + 2y + 6z = 6$.

- Suppose the intersection is
 \[x_0 = \left(\frac{8}{3} + 2t, -2t, 1 + t\right).\] (1)
- The point x_0 lies on the plane, so
 \[3\left(\frac{8}{3} + 2t\right) + 2(-2t) + 6(1 + t) = 6.\]
- Solve t from this equation:
 \[8 + 6t - 4t + 6 + 6t = 6,\]
 which implies $t = -1$.
- The intersection is obtained by substituting $t = -1$ in (1):
 \[x_0 = \left(\frac{2}{3}, 2, 0\right).\]
If a plane M is defined by the equation $ax + by + cz = d$, then $\mathbf{n} = (a, b, c)$ is a normal of M. This is also a direction vector of the line.
If a plane M is defined by the equation $ax + by + cz = d$, then $n = (a, b, c)$ is a normal of M. This is also a direction vector of the line.

If the line passes through q then the line can be parametrised by

$$\ell: q + tn.$$
Line through a point perpendicular to a plane

- If a plane M is defined by the equation $ax + by + cz = d$, then $\mathbf{n} = (a, b, c)$ is a normal of M. This is also a direction vector of the line.

- If the line passes through \mathbf{q} then the line can be parametrised by

$$\ell: \mathbf{q} + t\mathbf{n}.$$

- The projection of \mathbf{q} on M is $\hat{\mathbf{q}}$, the intersection of the line ℓ with M.
Example

Let \(M \) be defined by \(2x - y - z = 3 \), and let \(q = (-2, 2, 3) \). Find the projection of \(q \) on \(M \).
Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal:

 $n = (2, -1, -1)$.

Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal:
 \[n = (2, -1, -1). \]
- The line through p perpendicular to M is parametrized by
 \[q + tn = (-2, 2, 3) + t(2, -1, -1) = (2t - 2, -t + 2, -t + 3). \]
Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal:
 $$\mathbf{n} = (2, -1, -1).$$
- The line through \mathbf{p} perpendicular to M is parametrized by
 $$\mathbf{q} + t\mathbf{n} = (-2, 2, 3) + t(2, -1, -1) = (2t - 2, -t + 2, -t + 3).$$
- The parametric equations are
 $$x = 2t - 2, \quad y = -t + 2 \quad \text{and} \quad z = -t + 3.$$
Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal:
 \[n = (2, -1, -1). \]
- The line through p perpendicular to M is parametrized by
 \[q + tn = (-2, 2, 3) + t(2, -1, -1) = (2t - 2, -t + 2, -t + 3). \]
- The parametric equations are
 \[x = 2t - 2, \quad y = -t + 2 \quad \text{and} \quad z = -t + 3. \]
- Substitution in the equation for M give the equation
 \[2(2t - 2) - (-t + 2) - (-t + 3) = 3 \quad \Rightarrow \quad 6t - 9 = 3. \]
Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal: $n = (2, -1, -1)$.
- The line through p perpendicular to M is parametrized by $q + tn = (-2, 2, 3) + t(2, -1, -1) = (2t - 2, -t + 2, -t + 3)$.
- The parametric equations are $x = 2t - 2$, $y = -t + 2$ and $z = -t + 3$.
- Substitution in the equation for M gives the equation $2(2t - 2) - (-t + 2) - (-t + 3) = 3$ \Rightarrow $6t - 9 = 3$.
- Solving this equation yields $t = 2$.
Example

Let M be defined by $2x - y - z = 3$, and let $q = (-2, 2, 3)$. Find the projection of q on M.

- The coefficients of the equation for M give the normal:
 \[n = (2, -1, -1). \]
- The line through p perpendicular to M is parametrized by
 \[q + tn = (-2, 2, 3) + t(2, -1, -1) = (2t - 2, -t + 2, -t + 3). \]
- The parametric equations are
 \[x = 2t - 2, \quad y = -t + 2 \quad \text{and} \quad z = -t + 3. \]
- Substitution in the equation for M give the equation
 \[2(2t - 2) - (-t + 2) - (-t + 3) = 3 \quad \Rightarrow \quad 6t - 9 = 3. \]
- Solving this equation yields $t = 2$.
- Substitution of $t = 2$ in the parametric equations gives the intersection:
 \[\hat{q} = (2, 0, 1) \]
Distance of a point to a plane

Theorem

If \(P \) is a point on the plane \(M \), and \(\mathbf{n} \) is a normal of \(M \), the distance of an arbitrary point \(Q \) to \(M \) is

\[
d = \frac{|\overrightarrow{PQ} \cdot \mathbf{n}|}{|\mathbf{n}|}
\]
Theorem

If P is a point on the plane M, and n is a normal of M, the distance of an arbitrary point Q to M is

$$d = \frac{|PQ \cdot n|}{|n|}$$

- The distance can be found by calculating $|q - \hat{q}|$, where $q = \overrightarrow{OQ}$ and \hat{q} is the projection of q on M.

Section 12.5, page 711
The plane M is defined by $3x + 2y + 6z = 6$. Find the distance of $Q = (1, 1, 3)$ to M.
Example

The plane M is defined by $3x + 2y + 6z = 6$. Find the distance of $Q = (1, 1, 3)$ to M.

- The coefficients of the equation for M give the normal:
 \[\mathbf{n} = (3, 2, 6). \]
The plane M is defined by $3x + 2y + 6z = 6$. Find the distance of $Q = (1, 1, 3)$ to M.

- The coefficients of the equation for M give the normal:
 \[\mathbf{n} = (3, 2, 6). \]

- For a point of M, choose two values for say x and z, then y follows from the equation:
 \[x = 0, \ z = 0 \quad \Rightarrow \quad y = 3, \]
 hence $P = (0, 3, 0)$ is a point of M.

\[\text{The distance of } Q \text{ to } M \text{ is} \]
\[d = \left| \frac{(1 - 0, 1 - 3, 3 - 0) \cdot (3, 2, 6)}{|n|} \right| = \frac{|(-2, -2, 3) \cdot (3, 2, 6)|}{\sqrt{3^2 + 2^2 + 6^2}} = \frac{17}{7}. \]
Example

The plane M is defined by $3x + 2y + 6z = 6$. Find the distance of $Q = (1, 1, 3)$ to M.

- The coefficients of the equation for M give the normal:
 $$n = (3, 2, 6).$$
- For a point of M, choose two values for say x and z, then y follows from the equation:
 $$x = 0, \ z = 0 \implies y = 3,$$
 hence $P = (0, 3, 0)$ is a point of M.
- The distance of Q to M is
 $$d = \frac{|PQ \cdot n|}{|n|} = \frac{|((1, 1, 3) - (0, 3, 0)) \cdot (3, 2, 6)|}{\sqrt{3^2 + 2^2 + 6^2}} = \frac{17}{7}.$$
Parametrise the line ℓ as follows:

$$\ell : \mathbf{r}(t) = (x_0, 0, 0) + t(x_1 - x_0, y_1, z_1), \quad t \in \mathbb{R}.$$
- Parametrise the line \(\ell \) as follows:
\[
\ell : \mathbf{r}(t) = (x_0, 0, 0) + t(x_1 - x_0, y_1, z_1), \quad t \in \mathbb{R}.
\]
- The intersection of \(\ell \) and the \(yz \)-plane is \(P = \mathbf{r}(t_0) \) with \(t_0 = \frac{x_0}{x_0 - x_1} \).
Parametrise the line \(\ell \) as follows:
\[
\ell : \mathbf{r}(t) = (x_0, 0, 0) + t(x_1 - x_0, y_1, z_1), \quad t \in \mathbb{R}.
\]

The intersection of \(\ell \) and the \(yz \)-plane is \(P = \mathbf{r}(t_0) \) with
\[
t_0 = \frac{x_0}{x_0 - x_1}.
\]

For \(P = (0, y, z) \) we have
\[
y = t_0 y_1 = \frac{x_0 y_1}{x_0 - x_1} \quad \text{and} \quad z = t_0 z_1 = \frac{x_0 z_1}{x_0 - x_1}.
\]
Exercises

Section 12.5: 39, 45, 53, 57, 74.